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Abstract. We present a non-equilibrium molecular dynamics (NEMD) computation of both 
direct and cross thermotransport coefficients of a strong coupled binary mixture of positive 
charges in a negative neutralising background (binary ionic mixture) in the special case in 
which the charge and mass ratios of the mobile species are the same. We use a modified 
version of the MacGowan-Evans NEMD algorithm. We find that the direct coefficients 
qualitatively agree with the predictions of the one-fluid approximation. We show that the 
cross properties depend mainly on the relative interaction energy of the two different species 
in the mixture, while the range of interaction gives a small correction. 

1. Introduction 

Recently, the inter-diffusion in dense binary ionic mixtures has been extensively studied 
by both theoretical and molecular dynamics methods [l-31. This phenomenon is of 
interest in some astrophysical problems to explain the composition of fluid planets [4] 
or the distribution of heavy elements in the atmosphere of white dwarfs [3,5]. 

Little attention has been given to the computation of cross thermotransport coef- 
ficients of dense plasmas mainly because the cross properties, being rather weak effects, 
are difficult to reveal and reliable calculation of cross coefficients is a heavy com- 
putational task. Further, an estimation of the thermal diffusion ratio based on kinetic 
theory, performed in [3], has shown that in the intermediate-coupling regime the thermal 
diffusion effect can be negligible when compared with ordinary diffusion. Nevertheless, 
it is known that the kinetic theory fails when the density increases (or the temperature 
decreases), i.e. in the strong-coupling regime. 

In this paper we present a computation of direct (inter-diffusion and thermal con- 
ductivity) and cross (thermal diffusion and diffusion thermo-effect) coefficients by non- 
equilibrium molecular dynamics (NEMD), for a binary ionic mixture (BIM) [ l ,  21 at a 
thermodynamic point in a very dense fluid phase of the mixture (strong-coupling regime), 
in the special case in which the charge and mass ratios between the two species are the 
same. 

We obtain the direct and cross coefficients of the BIM with statistical error less than 
5% and lo%,  respectively. As expected, we find the behaviour to be dominated by the 
plasma oscillations which is typical in the homogeneous ( k  = 0) Coulomb systems with 
rigid background, for both the direct and the cross dynamical responses. Our results 
show that the direct transport properties can be predicted, in a very reasonable way, by 
the one-fluid approximation [6] based on a one-component plasma (OCP) with effective 

0953-8984/90/051315 + 10 $03.50 @ 1990 IOP Publishing Ltd 1315 



1316 C Pierleoni and G Ciccotti 

valence Zzf f  = ( x l Z 1  + x2Z2)1/3(x1ZI’3 + x , Z : / ~ )  [7,8] where x, is the number con- 
centration of species a. As for the cross properties, we find that the relative weight of 
cross to direct dynamical response (equation (5.3)) is about 30%. This corresponds to 
a value of the phenomenological dimensionless cross coefficient kT ,  appearing in the 
diffusion Fick’s law (equation (3 .7) ) ,  of -1.4. This result shows the failure of kinetic 
theory predictions [3] for the strong-coupling regime in which we have to consider both 
direct and cross contributions to the diffusion. Finally, comparing this dynamical result 
with the corresponding one for the Lennard-Jones (L-J) equimolar binary mixture with 
the same mass ratio, recently studied by one of us [9], we find that the ratio between the 
relative weights of cross to direct response in the inter-diffusion currents of the BIM, and 
of the L-J mixture, is nearly the same as the ratio v ~ ~ ~ / v ~ - ~  where vL-J = ( E , ~ / E ~ ~ ) ~  = 
E ~ ~ / E ~ ~  (for Lorentz-Berthelot mixtures) and vBIM = ( e 2 / e 1 ) 2  (note that the Coulomb 
interaction follows the Lorentz-Berthelot rule). This result shows that, in spite of the 
very different interaction laws and the plasma-oscillation-dominated behaviour of the 
Coulomb system, the cross properties depend mainly on the ratio between the interaction 
energies of the two different species in the mixture. This means that, in a qualitative 
sense, all the results on the cross properties of L-J mixtures [9-111 can be used to predict 
the BIM results. 

We used a modified version of the MacGowan-Evans NEMD algorithm [ 101 to cope 
with the long-range Coulomb potential. This is a NEMD algorithm belonging to the class 
of so-called synthetic algorithms [12, 131 that allow us to excite a current into a system 
while preserving its translational invariance. This property is required from the periodic 
boundary conditions used in molecular dynamics. The main advantage of NEMD tech- 
niques with respect to the equilibrium molecular dynamics (EMD) method is the possi- 
bility of exploring the non-linear regime (see, e.g., [14]). Further, for short-range 
potential systems, the NEMD method is shown more efficient, in terms of computer time, 
than the equilibrium one. The last advantage is lost in Coulomb systems [15]. Finally, 
the subtraction NEMD technique that we use [16] needs also the equilibrium trajectory 
of the system. Therefore the equilibrium results are also obtained as a byproduct of the 
method. This is an important test in high-density systems where most of the theories 
fail. 

To assure the linear behaviour of the system, we used impulsive perturbations in the 
framework of the subtraction technique [ 161. The thermal conductivity of a ocp has been 
already computed in an analogous way [ 151. 

2. The model 

The BIM is a theoretical model for ion mixtures that consist of N I  classical point ions of 
charge Z,e and mass ml,  and N, classical point ions of charge Z,e and mass m,, immersed 
in a uniform neutralising background, e being the elementary charge. The independent 
thermodynamic variables of the system are the concentration of one species given by 
x1 = N1/N with N = N I  + N2, and the coupling parameter = (ez /akBT) ,  where a = 
(3/4nn)‘i3 is the ion-sphere radius, n = N/V  is the total number density, V is the 
total volume, kB is the Boltzmann constant and Tis the temperature. Other useful quan- 
tities to define are: (i) n, = N,/V, pa = men,, the number and mass densities of species 
a; (ii) x, = n,/n, c, = p,/p, the number and mass concentrations species a; (iii) (m) = 
xlml + x2m2, ( Z )  = x l Z l  + x 2 Z 2 ,  the mean mass and mean valence of the ions; (iv) cop = 
(4nn(Z>2e2/(m))1/2 the hydrodynamical plasma frequency, whose inverse we choose as 
time unit. 
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As pointed out elsewhere [l], in the special case in which the condition Z1/Zz = 
ml /mz is fulfilled, the electric current, defined in the centre-of-mass framework, and 
the corresponding electric conductivity of the BIM vanish and the phenomenological 
transport laws reduce to those of a mixture of simple liquids. We choose such a BIM, 
firstly, because it is the simplest ionic mixture? and, secondly because we want to 
compare the present results with the corresponding L-J mixtures so that we can avoid 
phenomena, such as the electric current, lacking in mixtures of simple fluids. We choose 
Z1 = 1, Z 2  = 2, ml = 2 au, m2 = 4 au, x 1  = 0.5 and I' = 40 that represent an equimolar 
mixture of deuterium and helium (D+ - He2+) in the fluid phase, not far from the fluid- 
solid transition [8]. The latter, in the framework of a one-fluid model, can be estimated 
to occur at r = 75. In [8,18] it was shown that a BIM with no responding background is 
miscible under all the thermodynamic conditions. 

3. Phenomenological laws and Green-Kubo relations 

With reference to previous NEMD work on cross coefficients [9, 101 we adopted the 
following phenomenological laws to describe the transport of matter and heat in a binary 
mixture: 

J D  = - (LDQ /T)V(ln T )  - (LDD / T ) v ~ ( p i  - ~2 

J Q  = - ( L Q Q / T ) V ( ~ ~  T )  - (LQD / T ) V T ( P ~  - P Z  1 
(3.1) 

(3.2) 
where, as usual, the heat current J Q  is defined so that, to avoid the temperature depen- 
dence in the diffusive gradient, the notation V T p ,  means 

VTP, = ( a P , / a P > T  VP + (aPu,/ax,)Tvx, (3.3) 
and p, = p,( T ,  P ,  x,) is the specific (per unit of mass) chemical potential of species a. 
The quantity J D  is the inter-diffusive current defined as 

J D  = x2J1 /mi - xiJz /mz (3.4) 

J ,  = P,(u, - U) ( a  = 1,2)  (3.5) 

where 

is the mass current of species a relative to the centre-of-mass frame, U, is the local 
velocity field of the component cv and U = clul  + czuz is the local velocity field of the 
total system. 

In a binary mixture, &I, = 0 and equation (3.4) reduces to 

J D  = (h ) /mimz)J i .  (3.6) 
The quantities L ,  (a ,  /3 = (3, 0)  appearing in equations (3.1) and (3.2) are thephenom- 
enological transport coefficients that we have to compute. 

The constitutive equation for the inter-diffusion current adopted in astrophysical 
problems is [3, 191 

U12 = U1 - U2 = T ( D ~ z / X ~ X ~ ) [ V X I  -t kT V ( h  T ) ]  (3.7) 
in which appear two phenomenological coefficients DlZ and kT which are, respectively, 
the inter-diffusive coefficient and the thermal diffusion ratio. 
t This special case presents a dynamical behaviour very similar to the OCP [17]. In particular, it has only a 
plasma frequency, that defined above. 
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The relations between these coefficients and those in equation (3.1) are 

D 1 2  s(kB/Xlx2 )(LDD /.) 
k? = (1/s)(x1x2 /kB T > ( L D Q  l L D D )  

where B is the thermodynamic factor given by 

= (xlml /kBT)(apl lax, I T .  (3.10) 

In an ideal mixture 9 takes the value 1 [ 11. Because the deviations from the ideality are 
small in the BIM model [8,18], we assume this value. 

To derive equations (3.8) and (3.9), we have used the Gibbs-Duhem relation 

c P a  V?,Pff = 0. (3.11) 
ff 

The thermal conductivity A is defined by the Fourier law. For a binary system, in the 

(3.12) 

The phenomenological transport coefficients are related to the microscopic dynamics 
of the system by the Green-Kubo relations that for the coefficients in equations (3.1) 
and (3.2) are [20] 

steady state defined with JD = 0, we have [ 101 

A = (1/T2 )(LQQ - LZ,Q/L,D). 

(3.13) 

where 

c,(t) = U;=, ( t )  d f=o (o ) ( f l ,w )  (a ,  P = Q ,  0)  (3.14) 

is the space Fourier transform of the current a at k = 0 and fbw is the equilibrium 
phase space probability distribution. Between the cross coefficients the Onsager recipro- 
cal relation L,, = LDQ holds. 

4. Microscopic currents and McGowan-Evans equations of motion 

The microscopic expression of the energy current for a BIM can be easily written extending 
that for an OCP [15,21] to the case of two different species. It is 

where 

is the energy of particle i of species a, and 

In the above expressions, rj ,  and',, are the coordinates and momenta, respectively, of 
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particle i of species (Y, I is the unit tensor, q is a vector in Fourier space and q is a unit 
vector defined as q = q / q .  The quantity U is the microscopic centre-of-mass velocity 

According to [lo], in the limit of an ideal mixture (e.g. an isotopic mixture) and for 
linear order in (U, - U ) ,  the microscopic expression for the heat current (3.2) is obtained 
from the energy current (4.1) removing all of the terms proportional to (U, - U ) .  The 
resulting current Jp is 

where 

is the energy of particle i of species (Y measured in the comoving frame. Deviations from 
the ideality are small in a BIM and we do not discuss them. The problem is treated in [9]. 

The microscopic expression of the inter-diffusive current JD can be easily obtained 
by its definition (3.4) and (3.5) noting that U, = (U,) where the symbol ( .  . .) denotes a 
statistical mechanical average. We have 

The equations of motion for a system forced by an external perturbation Fext ( t ) ,  not 
necessarily Hamiltonian, are 

+ L ,  = P l n / m a  + C, , .F,x t ( t )  (4.9) 

d i n  = Fie + DreFext(t) (4.10) 
where F, ,  is the total internal force acting on particle i of species (Y and D,, = 
DL,({r,, P,} , ,~  N ) ,  C , ,  = C,,({r,,  p,},,* N )  are phase space functions that describe the coup- 
ling of the perturbation to the system. If the strength of the perturbation is not very high, 
we can use the non-Hamiltonian version of the linear response theory [13], to obtain the 
response of an arbitrary phase space B = B({r,, p,},= l , N )  observable to the perturbation 
contained in equations (4.9) and (4.10) in terms of equilibrium ensemble averages: 

1 '  
( @ I  = (BIfhN) + - j d~'(B(t)&(t')lfb"3) (4.11) 

k B T  Ion 

where 
(Y 

k" = 2 (vrIn~o * +,a + vp,,~o  in = ~ c x t  * Fext (t> (4.12) 
N I  

JeXt  = 2 5 (," D,, - F i e  
iY 1 m,. 

(4.13) 
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ko is the rate of energy dissipation due to the external force and ton is the switching-on 
time of the perturbation. Equation (4.11) is valid if the phase space compressibility 
factor is zero, i.e. if 

a 

(4.14) 

The symbol ( 1 )[in equation (4.11) denotes a statistical average on the non-equilibrium 
ensemble at time t. 

FixingJ,,, = J f Z 0  ( a  = D ,  Q), thelinearresponse(4.11)ofthecurrentJf=0 issimply 
related to the corresponding Green-Kubo formula (3.13) and (3.14). 

To excite both the diffusive and the heat current, we need to simulate two differently 
perturbed systems. Following the McGowan-Evans prescription, we assume Cia = 0 for 
both systems and 

D; = x 2  Of: = - X I  (4.15) 

(4.16) 

Substituting these expressions in (4.9), (4.10), (4.6), (4.8), (4.13) and (4.14) we obtain, 
respectively 

(Y 

E 2PiW = 0 conservation of total momentum 
a i  

g -  y 

A? = 0 
0 - J k = O  e t  

(Y = Q ,  0). 

The external fields F,",, (t) ( a  = D ,  Q) used by us had an impulsive time behaviour and 
were along the z direction 

CX,(t) = (0, 0, P a ) S ( t )  ( a  = D ,  Q) .  (4.17) 

Then, the diffusive and thermal responses to both kinds of imposed perturbation are 

( i k " = o ) p . t  = (1 /b  W k a = o ( t ) j f = o ( O )  I f r v p  (a ,  P = e, 0) 
(4.18) 

where jka,o is the z-component of the current a. Direct time integration of equations 
(4.18) gives the required transport coefficients: 

5.  Implementation and results 

(4.19) 

We studied a system of N = 250 particles in a cubic box of edge L ,  with periodic boundary 
conditions. To deal with the long-range nature of the Coulomb potential, we used the 
Ewald technique. The convergence parameter and the long-range cut-off were chosen 
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Table 1. Results for the direct and cross responses: P,, strength of perturbation; (rm,": imax), 
time interval chosen to compute the plateau value of the integral; K, are defined in equations 
(5.1) and (5.2). The reduced quantities are defined as follows: KQ(cgs) = K$(e"w;n)/kB; 
KD(CgS) = Ki(o;/akB): PQ(cgs) = P5(mL2w,/e2); PD(cgs) = Pg(L0,);  LQQ(cgs) = 
LzQ(e40pn)/kB; LDD(cgs) = L6D(wp/akB); LDQ(cgs) = LgQ(ezwp/a2kB). 

K$ f AK: L& f AL2b Source 

LQQ (190; 300) 
lo-,? (210; 290) 

LDD (190; 300) 
3 x lo-* (190: 260) 

LDQ (190; 300) 
(210; 280) 

LQD (190; 300) 
3 X (170; 250) 

(0.233 f 0.002) X (0.43 f 0.02) X EMD results 
(0.228 f 0.001) x lo-' 

(0.257 2 0.002) x (0.500 t 0.015) X EMD results 
0.250 X (0.497 t 0.012) x NEMD results 

(0.45 f 0.02) x NEMD results 

-(0.70 t 0.07) X 

-(0.65 2 0.05) X lo-' 

-(0.70 2 0.07) X lo-' 
-(0.67 2 0.05) X 

EMD results 
NEMD results 

EMD results 
NEMD results 

as in [15] to ensure continuous behaviour of the mechanical response (the response of 
the system as computed from a given initial condition) when the subtraction technique 
is used. The Verlet algorithm [22] was used to integrate the equations of motion, with 
the time step h = 0. 1wpl. 

For both thermal and diffusive perturbations, we performed 800 sectors (mechanical 
responses), each of 300 time steps, i.e. 240 000 time steps for the unperturbed system. 
In table 1 we collect our NEMD and EMD results for the coefficients L,. The quantities 
K,, which as usual represent the average initialvalue for the direct responses (superscript 
neq) or for the autocorrelation functions (superscript eq), are defined as 

Agreement between NEMD and EMD results is excellent and the statistical uncertainties 
inherent to the two methods are comparable (direct coefficients, about 5%;  cross 
coefficients, about 10%). As was expected in the linear regime, the cross coefficients 
L D Q  and L Q D  verify the Onsager reciprocal relation. In table 2, we report the values of 
A ,  012 and kT, obtained by (3.8), (3.9) and (3.12), and the available results for the OCP 
at r = 100. 

The statistical responses (average on the 800 independent initial conditions of the 
mechanical responses) of the heat current to the thermal perturbation and its time 
integral are very similar to the OCP responses reported in [15]. The value for the thermal 
conductivity A is very similar to what we expect for an OCP at a coupling slightly lower 
than = 100 [15]. In the one-fluid model for the BIM the best choice for the effective 
valence [7 ,  81 leads to defining the one-fluid coupling parameter as reff = 
(Z)1/3(25/3)rBIM. In the present case it is reff = 95, a very reasonable value. 

A similar feature is found for the other direct coefficient Ol2.  Indeed, using the 
relation 012 = x l D ,  + x 2 D 2  [l], we can compare the present value of inter-diffusion 
with the self-diffusion coefficient of the OCP computed in [23]. As for the thermal 
conductivity the value achieved in a BIM is as we expect for an OCP with r about 100. 
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Table 2. Results for the direct and cross transport coefficients. The reduced quantities are 
defined as follows: D,,(cgs) = DT2(o ,a2) ;  kT  dimensionless; A(cgs) = A*(k,w,a’n); PCB, 
EMD result for a OCP at = 100.9 from [15]; B,  EMD result for self-diffusion coefficient of the 
OCP at 

i. Di2 kT Source 

= 100.0 from [23]. 

0.62 * 0.05 (8.4 2 0.3) X lw3 -1.39 ? 0.14 EMDreSUltS 
0.66 t 0.04 (8.3 2 0.2) X lo-’ -1.30 * 0.10 NEMD results 
0.724 * 0.033 (PCB) 6.02 X (B) 

20--ri 10 

-30 1 1 1 1 1 ’ 1 1 1 1 ’ 1 1 1 1 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1  
0 60 100 160 200 260 300 

Time steps 

Figure 1. Equilibrium cross correlation function Cao(t) (-) and statistical cross responses 
( j f = D = o ) a  , /Po ( .  . . . ’ ) ,  ( j f = ( , ) D , ,  / P D  (- .-). The ordinates are in arbitrary units. 

These results show that, for the direct transport properties, our particular R I M  behaves 
qualitatively like an OCP. 

In figures 1 and 2 we present the cross responses and their time integrals, respectively, 
and we compare NEMD and EMD results. The quantity kT computed by relation (3.9) 
assumes an unexpected high value (see table 2) for a cross coefficient of a system in 
a liquid-like state [lo]. To get a better understanding of the underlying dynamical 
phenomenon, we have to evaluate the relative weight of cross to direct response. The 
latter can be represented by the dimensionless quantity 

Using equations (3.13) and (3.14), Wcan be written as 

From the EMD results in table 1, we get WBIM = 0.30 = 30%. It is interesting to compare 
this quantity with the corresponding value for the L-J liquid mixture of [9]. This can be 

W =  ( I  L D Q  I / L D D ) ( K D  / K Q  (5.4) 
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-20 

-40 i \\ 

-100 0 " " " 1 ' ~ ' ' 1 ~ ~ ~ 1 1 ' 1 ~ 1 ~  50 100 150 200 250 300 

Time steps 

Figure 2. Integrals of the curves in figure 1. The horizontal lines with error bars mark the 
plateau values used for calculation of the transport coefficients. 

done in spite of the different thermodynamic state point of the two systems under 
consideration as, roughly speaking, the cross coefficients are quite independent from 
the specific thermodynamic condition, provided that the system is in a liquid-like state. 
The L-J system of [9] is an equimolar Ar-Kr mixture for which the quantity W takes the 
value WL" = 0.11 = 11%. Noting that the mass ratios for the two different mixtures 
are quite similar (mKr/mAr 2: 2,1), we tried to explain this difference in terms of the 
potential's parameters. We found WBIM/WL-J = 2.73 which should be compared with 
vBrM/vLJ = 2.87, where vBIM = ( e 2 / e 1 ) 2 ,  vLJ = =  thisresultsu result suggests 
that the quantity W depends mainly on the ratio between the interaction energy of the 
two different species in the mixture. The range and other details of the potential and the 
size of the particles should then give only small contributions to W. 

6. Concluding remarks 

We studied both the direct and the cross properties of thermal and diffusive transport 
in a BIM. We showed that the direct transport coefficients qualitatively agree with the 
predictions of the one-fluid approximation based on an OCP. Comparing our cross results 
with the L-J mixture results, we found that the relative weight of cross to direct dynamical 
response depends mainly on the mutual interaction between the two species in the 
mixture. 
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